Scope and Sequence Chart

LESSON	OBJECTIVES
CHAPTER 5 Probability	
Experiments, Sample Spaces, and Events	Define basic terms in probability Perform experiments involving probability Calculate probabilities using a priori and a posteriori approaches Explain the law of large numbers
Events and Operations	Define and give examples of mutually exclusive and independent events
Assigning Probability	Compute probabilities of events given certain conditions Enumerate the probability rules and apply them to solve problems involving chances Determine the conditional probability of events Solve real-life problems using probability Simulate real-life situations that involve counting and chance
UNIT 3 PROBABILITY DISTRIBUTIONS	
CHAPTER 6 Random Variables and Probability Distributions Random Variables	Define random variable and explain its usefulness in computing probabilities of events Differentiate discrete random variables from continuous random variables Enumerate the properties of a probability distribution Compute probabilities corresponding to a given random variable

LESSON	OBJECTIVES
Probability Mass Functions Probability Density Functions Mean and Variance of a Discrete Random Variable Applications of Expected Value	Construct the probability mass function for a given discrete random variable Draw the probability histogram for a probability mass function Compute and interpret the mean and variance of a probability distribution Apply the concepts of the mean and variance of probability distributions in real-life situations
CHAPTER 7 Special Probability Distributions Discrete Probability Distributions Continuous Probability Distributions Normal Approximation to the Binomial Distribution	Name some commonly used discrete probability distributions and enumerate their properties State examples of statistical experiments yielding the special types of discrete probability distributions Identify the appropriate discrete probability distribution for a given discrete random variable Compute probabilities, means, and variances of special probability distributions Name some commonly used continuous probability distributions and enumerate their properties Compute probabilities, means, and variances of special continuous probability distributions Name examples of normally distributed real-life data sets and apply the empirical rule to these data sets Compute probabilities using a normal probability table Determine percentiles from a normal probability table Compute normal approximation to the binomial probability

UNIT 4 INFERENTIAL STATISTICS	
LESSON	OBJECTIVES
CHAPTER 8 Sampling Distributions and Estimation Sampling Distribution of the Sample Mean \bar{x} Estimation	Construct the sampling distribution of the sample mean \bar{x} Find the mean and variance of the sampling distribution of \bar{x} Apply theorems on the sampling distribution of \bar{x} in solving word problems Obtain point and interval estimates for means and proportions of one and two populations Draw conclusions and make inferences based on the constructed confidence intervals Determine the appropriate sample size necessary to be able to make inferences about the population
CHAPTER 9 Tests of Statistical Hypothesis Statistical Hypotheses: An Overview Steps in Hypothesis Testing Testing Hypothesis About Parameters from One Population Testing Hypothesis About Parameters from Two Populations	Formulate null and alternative hypotheses Identify the types of errors that might be committed during hypothesis testing and their consequences Perform appropriate statistical tests involving the mean and proportion of one or two populations Draw conclusions and make inferences about the populations based on the tests of hypotheses conducted

LESSON	OBJECTIVES
CHAPTER 10 Linear Regression and Correlation Linear Correlation	Illustrate the nature of bivariate data Construct a scatter plot Describe shape (form), trend (direction), and variation (strength) based on a scatter plot Calculate the Pearson product-moment correlation coefficient and interpret
Simple Linear Regression Analysis	
	Draw the best-fit line on a scatter plot Calculate the slope and y-intercept of the regression line and interpret Predict the value of the dependent variable given the value of the independent variable
Solve problems involving correlation and regression analysis	
Use regression analysis in modelling real-life data	
Calculate the Spearman rank correlation coefficient and interpret	

